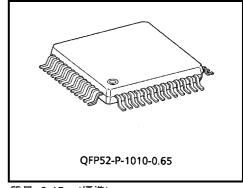
暫定資料

東芝バイポーラ形リニア集積回路 シリコン モノリシック


TA1260BF

衛星放送受信用 FM 復調ベースバンド映像信号処理

TA1260BF は、日本国内衛星放送受信用 FM 復調、ベースバンド 映像信号処理を行う LSI です。

本製品は、基準発振回路による AFT の無調整化が行え、外付け部 分の削減が可能です。

パッケージは QFP-52 (0.65mm ピッチ) を採用し、1 チップ音声処 理 IC『TC90A26F』と組み合せることにより、小型で高品位な衛星 放送受信システムを構築できます。

質量: 0.45 g (標準)

特 長

FM 復調回路部

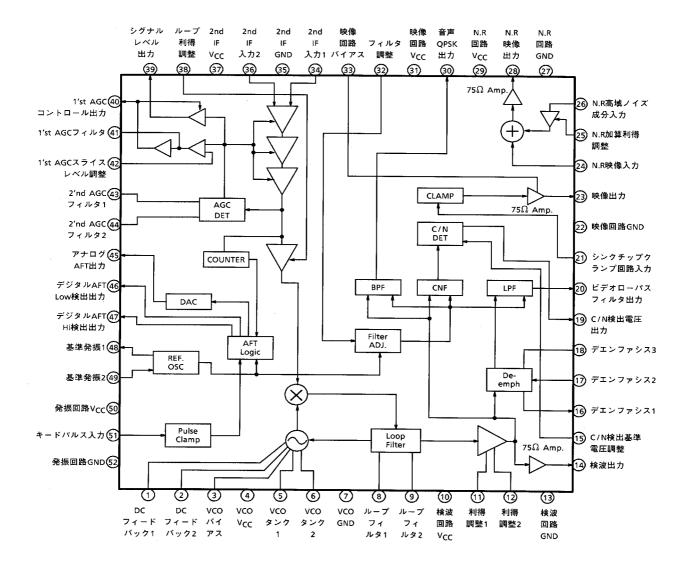
- PLL 方式 FM 検波器
- 2'nd IF AGC アンプ
- キードパルス対応無調整 AFT (デジタル AFT 出力対応)
- シグナルレベル出力
- 1'st AGC コントロール出力

ベースバンド処理回路部

- ディスパーサル除去用シンクチップクランプ回路
- 映像ローパスフィルタ
- 音声バンドパスフィルタ
- C/N 検出回路
- ノイズキャンセラ回路
- 3系統75Ω出力ドライバ(映像出力、検波出力、ノイズ キャンセラ出力)
- (注) 本製品は、サージ電圧に弱いため取り扱いには十分にご注意ください。

000629TBA1

●当社は品質、信頼性の向上に努めておりますが、一般に半導体製品は誤作動したり故障することがあります。当社半導体製品をご使用いただく場合は、半導体製品の誤作動や故障により、生命・身体・財産が侵害されることのないように、購入者側の責任において、機器の安全設計を行うことをお願いします。なお、設計に際しては、最新の製品仕様をご確認の上、製品保証範囲内でご使用いただくと共に、考慮されるべき注意事項や条件について「東芝半導体製品の取り扱い上のご注意とお願い」、「半導体信頼性ハンドブック」などでご確認ください。


• 本資料に掲載されている製品は、一般的電子機器(コンピュータ、パーソナル機器、事務機器、計測機器、産業用ロボット、家電機器など)に使用されることを意図しています。特別に高い品質・信頼性が要求され、その故障や誤作動が直接人命を脅かしたり人体に危害を及ぼす恐れのある機器(原子力制御機器、航空宇宙機器、輸送機器、交通信号機器、燃焼制御、医療機器、各種安全装置など)にこれらの製品を使用すること(以下"特定用途"という)は意図もされていませんし、また保証もされていません。本資料に掲載されている製品を当該特定用途に使用することは、お客様の責任でなされることとなります。

• 本資料に掲載されている製品は、外国為替および外国貿易法により、輸出または海外への提供が規制されているものです。

• 本資料に掲載されている技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当社および第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。

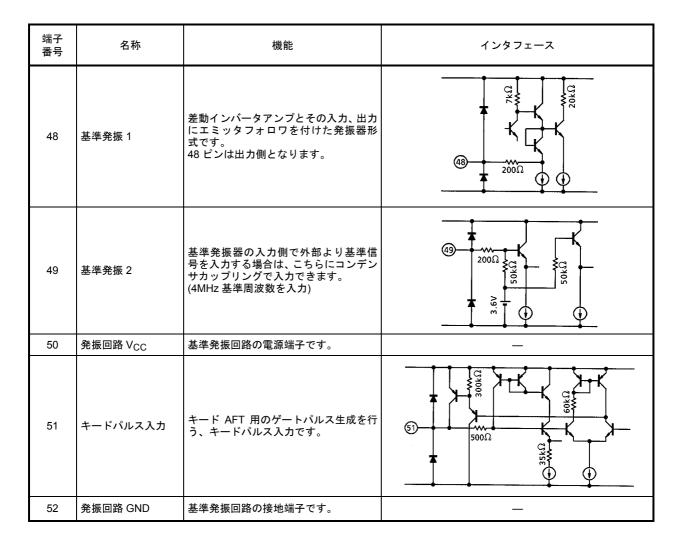
• 本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。

ブロック図

端子説明

端子 番号	名称	機能	インタフェース
2	DC フィードバック 1 DC フィードバック 2	VCO に内部可変インピーダンスを利用しているため、変換感度が高く、線形領域が狭くなりますのでリニアリティ補正回路を付加しております。検波出力のDC オフセットを検出して VCO のリニアリティセンタで検波させるため、DCオフセット検出するためのフィルタ端子です。	2MΩ CH2 3.5kΩ 3.5kΩ
3	VCO バイアス	VCO の温度ドリフトを最小限に抑えるため異なる温度係数のバイアスをミックスしています。この端子はそのミックス量を加減するために外付け抵抗を接続します。	3330 A A A A A A A A A A A A A A A A A A
4	VCO V _{CC}	発振回路の電源端子です。	_
5	VCO タンク 1 VCO タンク 2	基本発振回路は正帰還アンプで、ミキサからの制御信号を受けてインピーダンスが変化する VCO 回路構成です。 温度ドリフトを最小限にするためにコンデンサの温度係数にはご注意ください。	3330 3330 1.5V 1.5V 3V 3V
7	VCO GND	発振回路の接地端子です。	_
8	ループフィルタ 1 ループフィルタ 2	ミキサの出力にフィルタをかけ検波出力を得ると同時に VCO の制御信号をつくります。	8 200Ω 200Ω 9 10 10 10 10 10 10 10 10 10 10 10 10 10

端子 番号	名称	機能	インタフェース
10	検波回路 V _{CC}	検波出力回路の電源端子です。	_
11	利得調整 1	端子 11-12 間に可変抵抗をつけてゲインを調整します。 ゲインは抗値が小さいほど増しますが、回路の出力ダイナミックレンジのため、ゲインを上げすぎますと出力が歪みますのでご注意ください。	1) Coop (1)
13	検波回路 GND	検波出力回路の接地端子です。	_
14	検波出力	ディスパーサルおよび音声信号を含んだプリエンファシスのかかった映像信号 (検波出力) を 75Ω ドライバを介して出力しています。	(P)
15	C / N 検出基準 電圧調整	C / N検出回路は 12.7MHz を中心とする ノイズスペクトラムを検出し、そのノイ ズ量に応じた DC 信号を出力する回路で す。 この DC 出力に本端子を使用することに よりオフセットを付加することが可能 です。	100kΩ SU 100kΩ
16	デエンファシス 1	本端子の出力信号を用いてデエンファシスを掛けます。	16.8kΩ 12kΩ 12kΩ


端子 番号	名称	機能	インタフェース
17	デエンファシス 2	デエンファシス後の信号を入力します。	100Ω 100Ω 100Ω
18	デエンファシス 3	デエンファシスに用いる基準電圧を出 カします。また内部ではシングルー差動 変換して動作させています。	(B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
19	C / N 検出電圧出力	12.7MHz 帯域のノイズ成分を検波し、そのノイズ量に応じた DC 信号を出力します。 C / N= 5dB 時 V ₁₉ ≒1.0 [V] C / N= 20dB 時 V ₁₉ ≒3.5 [V] (参考値)	19 26kΩ CG0002 CG0002
20	ビデオローパス フィルタ出力	デエンファシス4.3MHzのLPFを通した映像信号 (ディスパーサル信号の三角波重畳) が出力します。	20 33.6kΩ (Fig. 1) (Fig. 2) (
21	シンクチップ クランプ回路入力	ディスパーサル信号の三角波を除去するためのシンクチップクランプ回路の入力端子です。 クランプ回路は帰還型で周期先端が2.2Vになるように動作します。	200Ω 300kΩ 300kΩ (3)

端子 番号	名称	機能	インタフェース
22	映像回路 GND	映像出力回路の接地端子です。	_
23	映像出力	ディスパーサル信号の三角波を除去した映像信号を 75Ω ドライバを通して出力しています。	33 T COS T COO S
24	ノイズリダクション 映像入力	ベース接地型アンプで受けています。 端子電圧は約 1.7V です。	2.5v 60000
25	ノイズリダクション 加算利得調整	C / N 検出回路で得られる C / N 量に応じた DC 信号をここに入力して、信号の高域成分加算量を自動的に変える働きをします。	2. 5. V (2. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
26	ノイズリダクション 高域ノイズ成分入力	映像信号より外付けのハイ・パス・フィ ルタを通して高域ノイズ成分を抽出し 入力します。	25 2. 5. 4 4 kΩ (2000)
27	ノイズリダクション GND	ノイズリダクション回路の接地端子	_

端子 番号	名称	機能	インタフェース
28	ノイズリダクション 映像出力	C/Nの劣化による映像信号にC/N比悪化の高域成分を負帰還かけることによって補うシステムです。75Ωドライバを介して出力しています。	
29	ノイズリダクション V _{CC}	ノイズリダクション回路の電源端子です。	_
30	音声 QPSK 出力	5.73MHz 音声 QPSK 信号を内部の BPF で抽出して出力します。	30 COOK 2.5kΩ
31	映像回路 V _{CC}	映像回路の電源端子です。	_
32	フィルタ調整	フィルタの調整に使用します。 温特補償のため、指定の外付け回路を使 用してください。	2 k
33	映像回路バイアス	映像出力バイアス端子です。	33 (3) (26.3kΩ (3000)) (2000) (3000)
34 36	2nd IF 入力 1 2nd IF 入力 2	2nd IF アンプは可変 gm 型のゲインコントロールアンプ 3 段で構成してあります。	34

端子 番号	名称	機能	インタフェース
35	2nd IF GND	2nd IF アンプ回路の接地端子です。	_
37	2nd IF V _{CC}	2nd IF アンプ回路の電源端子です。	_
38	ループ利得調整	PLL 部のループゲインを外部から調整できるようにミキサへの信号入力量を加減させることができます。	2.5v 2.5v 1.0kΩ
39	シグナルレベル 出力	入力レベルに応じた DC 信号を出力します。	39 T TOOUT
40	1' st AGC コントロール出力	IC の AGC 動作許容入力を越えた過大入 力時、IC 前段の RF アンプのゲインリダ クションをコントロールする DC 出力で す。 小入力時 : Hi 大入力時 : Low	40
41	1' st AGC フィルタ	1'st AGC の応答速度を適切にするため アクティブプルアップに容量を付けて 動作の加減を行います。	2.4kΩ 5kΩ 5kΩ 5kΩ

端子 番号	名称	機能	インタフェース
42	1' st AGC スライスレベル 調整	1'st AGC のかかる入力レベルの設定を 行う端子です。 1 / 2 V _{CC} を基準に動作するよう設計し てあります。	2.5ν Ω γου
43 44	2nd AGC フィルタ 1 2nd AGC フィルタ 2	IF 信号を内部抵抗と外付けコンデンサとでフィルタリングして AGC 電圧を発生させます。	43 20pF 44
45	アナログ AFT 出カ	デジタル AFT 信号を内部の D / A コンバータでアナログ値に変換し て出力します。	(2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
46	デジタル AFT Low 検出出力	入力 IF 周波数をカウントダウンし、 X' tal 基準信号と比較を行います。 FM 変調による影響を抑えるためカウントデータの平均値回路を備えております。入力 IF 周波数が周波数センタ近傍よりやや低い場合に「Low」から「Hi」に出力が変わります。	\$200KD
47	デジタル AFT Hi 検出出力	デジタル AFT Low 検出とは逆に入力 IF 周波数が周波数センタ近傍よりやや高い場合に「Low」から「Hi」に出力が変わります。 周波数センタ近傍 (幅約 300kHz) では Low 検出、Hi 検出ともに「Hi」となり 入力 IF 周波数がセンタにあることを示します。	

最大定格 (Ta = 25°C)

	項	目		記号	定格	単位
電	源	電	圧	V _{CC}	6.0	٧
消	費	電	カ	P_{D}	925 (注)	mW
動	作温		度	T _{opr}	-20~85	°C
保 存 温 度				T _{stg}	−55∼150	°C

(注) 製品単体の数値です。25°C 以上で使用する場合には 1°C につき 7.4mW を減じてください。 本製品を使用するに当たり、十分な放熱設計を行ってください。 基板実装時の熱抵抗は、65°C/W 以上取るように設計してください。

動作電源電圧

端子 番号	端子名	最小	標準	最大	単位
4	VCO V _{CC}	4.75	5.0	5.25	V
10	検波回路 V _{CC}	4.75	5.0	5.25	V
29	N.R 回路 V _{CC}	4.75	5.0	5.25	V
31	映像回路 V _{CC}	4.75	5.0	5.25	V
37	IF V _{CC}	4.75	5.0	5.25	V
50	発振回路 V _{CC}	4.75	5.0	5.25	٧

電気的特性 直流特性(特に指定のない場合は、V_{CC}=5V、Ta=25°C)

				項	目					記号	測定 回路	測定条件	最小	標準	最大	単位											
無	入	カ	時	合	計	消	費	電	流	Icc TOTAL			90	130	154	mA											
		V2			1.5	2.5	3.5																				
										V3			_	0.1	0.3												
										V5			2.0	3.0	4.0												
										V6			2.0	3.0	4.0												
										V8			1.7	2.7	3.7												
										V9			1.7	2.7	3.7												
										V11			8.0	1.8	2.8												
										V12			8.0	1.8	2.8												
										V14			1.0	2.0	3.0												
										V15			2.0	2.5	3.0												
										V16			1.1	2.1	3.1												
			V17			1.1	2.1	3.1																			
										V18			1.5	2.5	3.5												
端			子			電			圧	V20	1		1.3	2.3	3.3	V											
-1111			•			吧		庄	Д	12	,1	1	,							1.1.	V21	'		1.2	2.2	3.2]
													V23			0.4	1.4	2.4									
										V24			8.0	1.8	2.8	_											
										V25			1.5	2.5	3.5												
										V26			8.0	1.8	2.8												
										V28			1.0	2.0	3.0												
										V30			2.3	3.3	4.3												
										V34			0.9	1.4	1.9												
										V36			0.9	1.4	1.9												
				V38			1.5	2.5	3.5																		
			V42			2.0	2.5	3.0]																		
										V48			2.3	3.3	4.3]											
										V49			2.6	3.6	4.6												
										V51			1.5	2.5	3.5												

交流特性 (特に指定のない場合は、V_{CC}=5V、Ta=25°C)

FM 復調部

項目	記号	測定 回路	測定条件	最小	標準	最大	単位
I F 入 力 周 波 数 範 囲	f _{in}			363	403	443	MHz
入カレベル範囲	V _{in}			-55	_	-10	dBmW
1' st AGC 肩 レ ベ ル	AGC _{MAX}		端子 42=2.5V (注 1)	-35	-25	-15	dBmW
1' st AGC 制 御 感 度	S _{AGC}		(注 2)	1.3	2.4	_	V / dB
シグナルレベル出力感度	∆ S/ ∆ V		(注 3)	0.05	0.10	0.15	V / dB
VCO 変 換 感 度	S _{VCO}		(注 4)	80	130	200	MHz / V
ロックレンジ	fL		端子 38=2.5V (注 5)	±17	±23	_	MHz
キャプチャレンジ	$f_{\mathbb{C}}$		端子 38=2.5V (注 5)	±17	±23	_	MHz
AFT アナログ出カ感度	Δf/ ΔV		(注 6)	1.0	1.3	1.8	MHz / V
キ ー ド A F T パ ル ス 入 カ レ ベ ル 範 囲	V_{key}	2		0.4	0.5	0.6	V _{p-p}
キ ー ド A F T パ ル ス 入 カ 周 期 範 囲	T _{key}			1	_	50	ms
AFT デジタル出力不感帯幅	f _{dead}		(注 7)	280	312.5	345	kHz
AFT デジタル出カハイ電圧	V _{DA} H		外付け 47kΩ プルアップ抵抗	4.5	_	5.0	V
A F T デジタル出カロー電圧	$V_{DA}L$		外付け 47kΩ プルアップ抵抗	0.0		0.5	V
AFT 電圧 C / N 比変動	⊿AFT _{cn}		C / N=14dB、 入力レベル=ー55dBmW	_	150		kHz
IM2 (2.15MHz ビート成分)	IM2		端子 1=2.05V (注 8)	45	50	_	dB
IM3 (1.43MHz ビート成分)	IM3		端子 1=2.05V (注 8)	45	50	_	dB
4 M H z 基 準 信 号 外 部 入 カ レ ベ ル	X _{in}			0.3	0.5	_	V _{p-p}

ベースバンド処理部 ビデオ処理回路

項目	記号	測定 回路	測定条件		最小	標準	最大	単位
デエンファシス出力周波数特性 1	f _{V1}		2MHz 減衰量	(注 9)	_	_	0.4	
デエンファシス出力周波数特性 2	f _{V2}		4.2MHz 減衰量	(注 9)	-3.0	-1.0	0.0	
デエンファシス出力周波数特性 3	f_{V3}		4.5MHz 減衰量	(注 9)	-6	-4	-3	
デエンファシス出力周波数特性 4	f _{V4}		5.23MHz 減衰量	(注 9)	-	-35	-30	dB
デエンファシス出力周波数特性 5	f _{V5}		5.73MHz 減衰量	(注 9)	_	-45	-40	
デエンファシス出力周波数特性 6	f _{V6}		6.23MHz 減衰量	(注 9)	-	-30	-25	
デエンファシス出力周波数特性 7	f _{V7}	2	10MHz 減衰量	(注 9)	_	-30	-25	
デエンファシス出力帯域内リップル	GR_V			(注 9)	-1.0	-0.5	+1.0	dB
デェンファシス出力群遅延特性	GD_V		3.58MHz 時	(注 9)	-100	0	+100	ns
D G (デェンファシス出カ)	DG _V			(注 10)	-	3	5	%
D P (デ エ ン フ ァ シ ス 出 カ)	DP_V			(注 10)	_	3	5	0
飽 和 S / N 比	SN _V			(注 11)	50	53	_	dB
ディスパーサル除去比	DP _R			(注 12)	50	54	_	dB

(注) 周波数特性は 100kHz を 0dB 基準とする。

検波出力回路

項目	記号	測定 回路	測定条件		最小	標準	最大	単位
復調検波出カレベル	V _{od}			(注 13)	1.14	1.34	1.54	V _{p-p}
復調検波出力周波数特性 1	f _{d1}		60Hz~4.0MHz	(注 14)		_	±0.5	dB
復調検波出力周波数特性 2	f _{d2}		60Hz~9.0MHz	(注 14)	_	_	±1.0	dB
復調検波出力群遅延特性 1	GD _{d1}	2	60Hz~4.0MHz	(注 14)	_	_	±10	ns
復調検波出力群遅延特性 2	GD _{d2}		60Hz∼9.0MHz	(注 14)	_	_	±20	ns
DG(検 波 出 カ)	DG _{DET}		APL : 10∼90%	(注 15)	_	3	5	%
DP(検 波 出 力)	DP _{DET}		APL : 10~90%	(注 15)	_	3	5	0

⁽注) 周波数特性は 200kHz を 0dB 基準とする。

音声フィルタ回路

			項目	1					記号	測定 回路	測定条件		最小	標準	最大	単位
音	声	出	カ		レ	/	•	ル	S ₀			(注 16)	280	400	570	mV_{p-p}
音	声出	カ	周:	波	数	特	性	1	f _{s1}		4.2MHz 減衰量	(注 17)	-	-22		dB
音	声出	カ	周:	波	数	特	性	2	f _{s2}	2	7.2MHz 減衰量	(注 17)	-	-22		dB
音	声出	カ	周:	波	数	特	性	3	f _{s3}	_	-3dB 帯域幅	(注 17)	-	0.9		MHz
音	声占	出 カ	群	遁	<u>E</u>	延	特	性	GD _s		5.73±0.5MHz	(注 17)	-70		240	ns
音	声 B	ΡF	出	力	(C /	N	比	CN _S			(注 18)	_	28	_	dB

⁽注) 周波数特性は 5.73MHz を 0dB 基準とする。

C/N 検出回路

			Į	頁目					記号	測定 回路	測定条件		最小	標準	最大	単位
C/N	出	カ	周	波	数	特	性	1	f _{c1}		9.7MHz	(注 19)	3.5	4.0	4.5	
C/N	出	カ	周	波	数	特	性	2	f _{c2}		12.7MHz	(注 19)	0.5	1.0	1.5	
C/N	出	カ	周	波	数	特	性	3	f _{c3}		15.7MHz	(注 19)	3.5	4.0	4.5	
C/N	出	カ	検	波	: '	電	圧	1	V _{cn1}	2	無入力時	(注 20)	3.5	4.0	4.5	V
C/N	出	カ	検	波	: '	電	圧	2	V _{cn2}		45mV _{p-p} 入力時	(注 20)	2.0	2.5	3.0	
C/N	出	カ	検	波	: '	電	圧	3	V _{cn3}		150mV _{p-p} 入力時	(注 20)	_	_	1.0	
C/N	出	J	כ	検	汧	支	感	度	S _{cn}			(注 21)	0.15	0.22	0.30	V / dB

N. R 回路

項目	記号	測定 回路	測定条件	最小	標準	最大	単位
ノイズリダクション出力レベル	V _{ONR}		(注 22)	1.8	2.0	2.3	V _{p-p}
ノイズリダクション加算最小利得	G _{NR} L		(注 23)	_	-1.0	_	dB
ノイズリダクション加算最大利得	G _{NR} H	2	(注 24)	-25	-30	_	dB
ノイズリダクション制御感度	S _{NR}	_	(注 25)	_	33	_	% / V
DG(ノイズリダクション出力)	DG _{NR}		(注 26)	_	3	5	%
DP(ノイズリダクション出力)	DP _{NR}		(注 26)	_	3	5	0

TOSHIBA TA1260BF

ベースバンド処理部調整要項

評価測定前に下記要項にて、調整を行ってください。

入力端子: 2nd IF入力1(端子34)に下記信号を入力する。

fin=402.78MHz (CW)

 $V_{in} = -30 dBmW (50 \Omega)$

① VCO コイル (端子 5-6)

入力信号を無入力にする。

2nd AGC フィルタ 2 端子 (端子 44) を外部電源にて 5.0V にする。

DC フィードバック 1 端子 (端子 1) を外部電源にて 2.1V にする。

VCO フリーラン周波数 (VCO の漏れ信号をスペクトラムアナライザで観測) をモニタし、発振周波数が $402.78 \text{MHz} \pm 200 \text{kHz}$ 以内となるように調整する。

② 利得調整 (端子 11-12)

入力信号をホワイト 100IRE、プリエンファシス : オン、ディスパーサル : オフで変調し、入力する。 映像出力端子 (端子 23) の出力振幅が $2V_{p^*p}$ (75 Ω 非終端) となるように利得調整端子 (端子 11-12) 間の可変抵抗を調整する。

③ フィルタ調整 (端子 32)

入力信号を正弦波スイープ信号 fm=1MHz \sim 10MHz、 Δ f=6.5MHzp-p で変調し入力する。

音声 QPSK 出力端子(端子 30)の出力信号をネットワークアナライザで測定し、 $5.73 \mathrm{MHz}$ を基準として $5.73 \mathrm{MHz}$ ± $500 \mathrm{kHz}$ ポイントの減衰量が同レベルになるようにフィルタ調整端子(端子 32)の可変抵抗を調整する。

TOSHIBA TA1260BF

測定条件

FM 復調部

(注 1) 1' st AGC 肩レベル

<調整>

入力 : 2nd IF 入力端子 (端子 34) に下記信号を入力する。

 f_{in} =402.78MHz (CW) V_{in} =0~-40dBmW

1'st AGC スライスレベル調整端子 (端子 42) を 2.5V にする。

<測定>

入力レベルを徐々に上げていき、1'st AGC コントロール出力端子 (端子 40) の出力電圧が 4V 以下となる入力レベルを測定する。

(注 2) 1' st AGC 制御感度

<調整>

(注1) と同様。

<測定>

入力レベルを徐々に上げていき、1' st AGC コントロール出力端子 (端子 40) の出力電圧が 4V、1V となる入力 レベル Vin をそれぞれ V_{in1} 、 V_{in2} として、下記で算出する。

$$S_{AGC} = -3 / (V_{in1} - V_{in2}) [V / dB]$$

(注3) シグナルレベル出力感度

<調整>

入力 : 2nd IF 入力端子 (端子 34) に下記信号を入力する。

 f_{in} =402.78MHz (CW) V_{in} =-20~-30dBmW

1'st AGC スライスレベル調整端子 (端子 42) を外部電源で 5V にする。

<測定>

入力レベルを-30dBmW、-20dBmW としたときのシグナルレベル出力端子 (端子 39) の出力電圧をそれぞれ V_{-30} 、 V_{-20} として、下記で算出する。

 $\Delta S / \Delta V = (V_{-30} - V_{-20}) / 10 [V / dB]$

(注 4) VCO 変換感度

<調整>

入力 : 2nd IF 入力端子 (端子 34) 無入力。 DC フィードバック 1 端子 (端子 1) を外部電源にて 2.1V にする。 2nd AGC フィルタ 2 端子 (端子 44) を外部電源にて 5.0V にする。 ループフィルタ 1、2 端子 (端子 8、9) の両端子間をショートする。

<測定>

ループフィルタ 1、2 端子 (端子 8、9) をショートしたまま、端子電圧を測定し、その電圧を $\pm 0.1V$ 外部電源にて変化させ、VCO 周波数を測定 (VCO の漏れ信号をスペクトラムアナライザで観測) し、下記計算式より求める。

 $\beta = (f_{+0.1} - f_{-0.1}) / 0.2 [MHz / V]$

(注5) ロックレンジ、キャプチャレンジ

<調整>

入力 : 2nd IF 入力端子 (端子 34) に下記信号を入力する。

 f_{in} =350~450MHz (CW) V_{in} =-30dBmW

DC フィードバック 1 端子 (端子 1) を外部電源にて 2.1V にする。 ループ利得調整端子 (端子 38) を 2.5V にする。

<測定>

入力周波数を変化させ、VCO の同期する範囲を測定する。

ロックレンジ : 周波数保持範囲 キャプチャレンジ : 周波数引き込み範囲

(注 6) AFT アナログ出力感度

<調整>

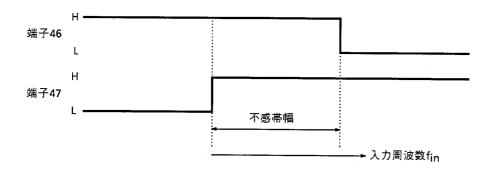
入力 : 2nd IF 入力端子 (端子 34) に下記信号を入力する。

 f_{in} =402.78±1MHz (CW) V_{in} =-30dBmW

<測定>

fin を上下して出力電圧が±0.5V変化するときのそれぞれの周波数をfH、fLとして、下記で算出する。

 $\Delta f / \Delta V = f_H - f_L [MHz / V]$


(注 7) AFT デジタル出力不感帯幅

<調整>

入力 : (注6) と同様。

<測定>

入力周波数を変化させ、デジタル AFT 検出出力範囲端子 (端子 46、47) の出力電圧がともにハイレベルとなる 入力周波数の範囲を測定。

(注8) IM2、IM3

<調整>

入力 : 2nd IF 入力端子 (端子 34) に下記信号を入力する。

 f_{in} =402.78MHz (CW) V_{in} =-30dBmW Δf =17MHz_{p-p}

色副搬送波 (3.579MHz) 10.93MHz_{p-p} (複合正弦波信号 90IRE)

音声副搬送波 (5.7272MHz) 6.5MHz_{p-p}

プリエンファシス : オン

DC フィードバック端子 (端子 1) を外部電源にて 2.1V にする。

<測定>

映像出力端子 (端子 23) に出力する周波数成分をビデオノイズメータの映像ゲートを通して、スペクトラムアナライザで観測する。

3.579MHz 成分に対する 2.15MHz 成分、1.43MHz 成分とのレベル差を測定する。

ベースバンド処理部

(注9) ビデオ回路 出力周波数特性、帯域内リップル、群遅延特性

<調整>

入力 : 2nd IF 入力端子 (端子 34) に下記信号を入力する。

f_{in}=402.78MHz (CW) V_{in}=-30dBmW

入力信号を複合正弦波信号 (50Hz~10MHz 正弦波 : 40IRE)、プリエンファシス : オン、ディスパーサル : オフで変調する。

<測定>

映像出力端子 (端子 23) の出力信号をネットワークアナライザで測定する。 (100kHz を 0dB 基準とする)

(注 10) ビデオ回路 微分利得、微分位相

<調整>

(注 9) と同様にし、入力信号を 10 段階波形信号 (3.58MHz 正弦波 : 20IRE)、プリエンファシス : オン、ディスパーサル : オフで変調する。

<測定>

映像出力端子 (端子 23) の出力信号を DG / DP 測定器に接続し、測定する。

(注11) 飽和S/N比

<調整>

(注 9) と同様にし、入力信号を灰色信号 (50IRE)、プリエンファシス : オン、ディスパーサル : オフで変調する。

<測定>

映像出力端子(端子23)の出力信号をビデオノイズメータで測定する。

(注 12) ディスパーサル除去比

<調整>

(注9) と同様にし、入力信号を5段階波形信号、プリエンファシス : オン、ディスパーサル : オンで変調する。

<測定>

映像出力端子 (端子 23) の出力を観測し、ディスパーサル信号レベル ΔV_{p-p} を測定する。 下記式よりディスパーサル除去比を算出する。

DP_R=20 λ og (2 / Δ V)

(注 13) 検波回路 検波出力レベル

<調整>

(注 9) と同様にし、入力信号をホワイト (100IRE)、プリエンファシス : オフ、ディスパーサル : オフで変調する。

<測定>

検波出力端子 (端子 14) の出力振幅を測定する。(75Ω非終端)

(注 14) 検波回路 出力周波数特性、群遅延特性

<調整>

(注 9) と同様にし、入力信号を正弦波 f_m =50Hz \sim 10MHz、 Δf =5MHz $_{p-p}$ 、プリエンファシス : オフ、ディスパーサル : オフで変調する。

<測定>

検波出力端子 (端子 14) の出力信号をネットワークアナライザで測定する。 (200kHz を 0dB 基準とする)

(注 15) 検波回路 微分利得、微分位相

<調整>

(注10)と同様。

<測定>

検波出力端子(端子 14)の出力信号を外部デエンファシス回路で処理し、DG / DP 測定器で測定する。

(注 16) 音声回路 出力レベル

<調整>

(注9) と同様にし、入力信号を正弦波 f_m=5.73MHz、△f=6.5MHz_{p-p} で変調する。

<測定>

音声 QPSK 出力端子 (端子 30) の 5.73MHz キャリヤ振幅を測定する。

(注 17) 音声回路 出力周波数特性、群遅延特性

<調整>

(注 9) と同様にし、入力信号を正弦波 f_m=1MHz~10MHz、 △f=6.5MHz_{p-p} で変調する。

<測定>

音声 QPSK 出力端子 (端子 30) の出力信号をネットワークアナライザで測定する。 (5.73MHz を 0dB 基準、0ns 基準とする)

(注 18) 音声回路 バンドパスフィルタ出力 C/N 比

<調整>

ループフィルタ外付け回路をはずす。

入力 : ループフィルタ 2 端子 (端子 9) に 1μ F で結合し、下記信号を入力する。

f_m=5.73MHz、0.26V_{p-p} の正弦波信号

ループフィルタ 1 端子 (端子 8) を 10μ F で交流接地する。

<測定>

音声 QPSK 出力端子 (端子 30) の出力電圧を実効値電圧計で測定し、f_S キャリヤ入力時の出力電圧と無入力時の出力電圧の比を算出する。

$$CNs = 20 \lambda og \frac{\lambda 力時}{無入力時} [dB]$$

(注 19) C/N 検出回路 出力周波数特性

<調整>

(注 18) と同様。さらに、C/N 検出基準電圧調整端子 (端子 15) を C/N 比 14 (※1) のとき、C/N 検出出力端子 (端子 19) の出力電圧が 2.5V となるように調整する。

ループフィルタ2端子(端子9)に下記信号を入力する。

9.7MHz、12.7MHz、15.7MHz、100mV_{p-p} の正弦波信号をそれぞれ入力する。

<測定>

C/N 検出出力端子 (端子 19) の出力電圧を各入力周波数に対し、測定する。

(注 20) C/N 検出回路 出力検波電圧

<調整>

(注19)と同様。

ループフィルタ2端子(端子9)に下記信号を入力する。

12.7MHz、0~150mV_{p-p} の正弦波信号を入力する。

<測定>

C/N検出出力端子(端子19)の出力電圧を各入力レベルに対し、測定する。

(注 21) C/N 検出回路 検波感度

<調整>

(注19)と同様。

ループフィルタ2端子(端子9)に下記信号を入力する。

12.7MHz、47mV_{p-p} の正弦波信号を入力する。

<測定>

入力レベルを ± 1 dB 変化(41.9 ~ 52.7 mV $_{p-p}$)させ、そのときの C / N 検出出力端子(端子 19)の出力電圧変化を Δ V $_{cn}$ とし、算出する。

 $S_{cn} = \Delta V_{cn} / 2[V / dB]$

(注 22) ノイズリダクション回路 出力レベル

<調整>

入力 : ノイズリダクション映像入力端子 (端子 24) に下記信号を入力する。

2V_{p-p} の標準 TV 信号

ノイズリダクション高域成分入力端子 (端子 26) を 10μ F で交流接地する。 ノイズリダクション加算利得調整端子 (端子 25) を 0V にする。

<測定>

ノイズリダクション映像出力端子 (端子28) の出力振幅を測定する。

(注23) ノイズリダクション回路 加算最小利得

<調整>

入力 : ノイズリダクション高域ノイズ成分入力端子 (端子 26) に下記信号を入力する。

2V_{p-p} の標準 TV 信号

ノイズリダクション映像入力端子 (端子 24) を 10μ F で交流接地する。 ノイズリダクション加算利得調整端子 (端子 25) を 0V にする。

<測定>

ノイズリダクション映像出力端子 (端子 28) の出力振幅 (V_{n1}) を測定し、算出する。 (このときの出力波形が、入力波形と逆相になっていることを確認する)

 G_{NR} L=20 $log (V_{n1} / 2V_{p-p}) [dB]$

(注24) ノイズリダクション回路 加算最大利得

<調整>

入力 : ノイズリダクション高域ノイズ成分入力端子 (端子 26) に下記信号を入力する。

2V_{p-p} の標準 TV 信号

ノイズリダクション映像入力端子 (端子 24) を $10 \, \mu\, F$ で交流接地する。 ノイズリダクション加算利得調整端子 (端子 25) を 5V にする。

<測定>

ノイズリダクション映像出力端子 (端子 28) の出力振幅 (Vn2) を測定し、算出する。 (このときの出力波形が、入力波形と逆相になっていることを確認する)

 $G_{NR} H=20 \lambda og (V_{n2} / 2V_{p-p}) [dB]$

TOSHIBA TA1260BF

(注25) ノイズリダクション回路 制御感度

<調整>

入力 : ノイズリダクション高域ノイズ成分入力端子 (端子 26) に下記信号を入力する。

2Vp-p の標準 TV 信号

ノイズリダクション映像入力端子 (端子 24) を $10\,\mu\,F$ で交流接地する。 ノイズリダクション加算利得調整端子 (端子 25) を 0V、2V、3V と可変する。

<測定>

ノイズリダクション映像出力端子 (端子 28) の出力振幅を測定し、それぞれ $V_{G(0)}$ 、 $V_{G(2)}$ 、 $V_{G(3)}$ とし、算出する。

 $S_{NR} = (V_{G(2)} - V_{G(3)}) \times (V_{G(0)} - (3-2)) [\% / V]$

(注 26) ノイズリダクション回路 微分利得、微分位相

<調整>

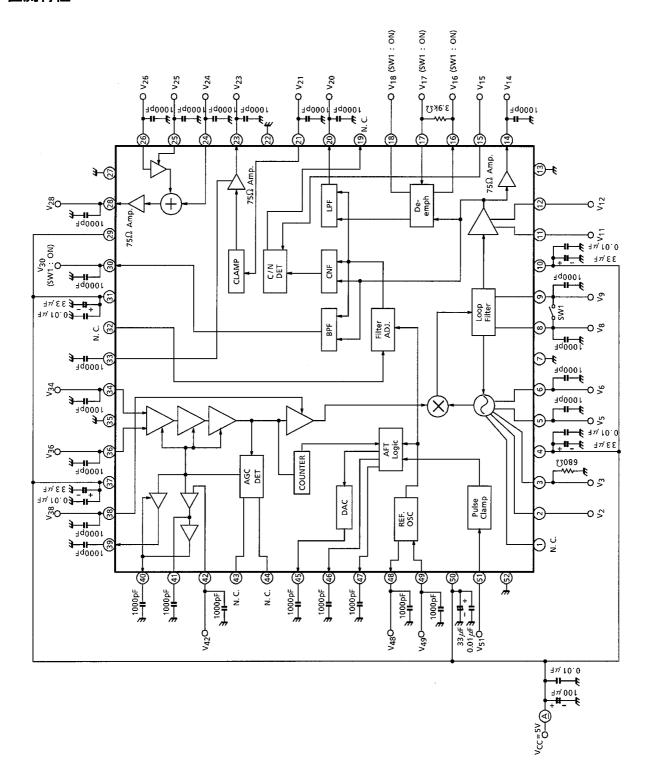
入力 : ノイズリダクション映像入力端子 (端子 24) に下記信号を入力する。

2V_{p-p} のランプ波形 TV 信号

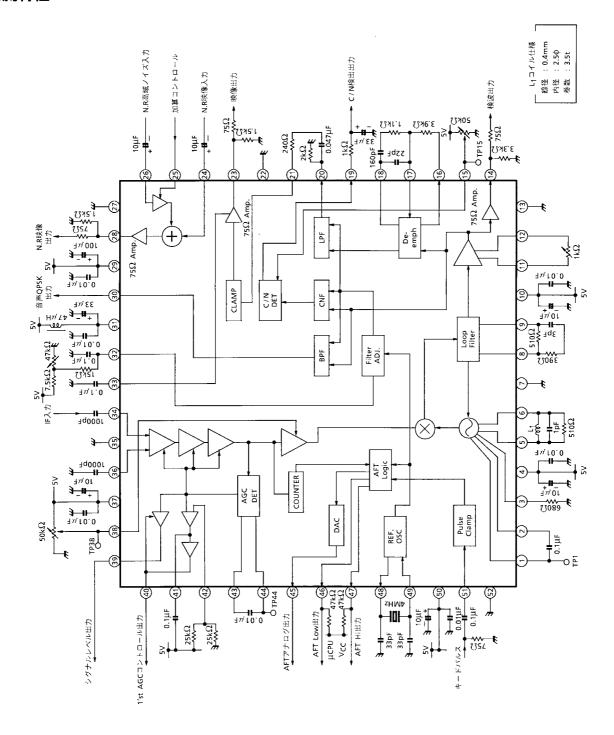
ノイズリダクション高域ノイズ成分入力端子 (端子 26) を 10μ F で交流接地する。 ノイズリダクション加算利得調整端子 (端子 25) を 0V にする。

<測定>

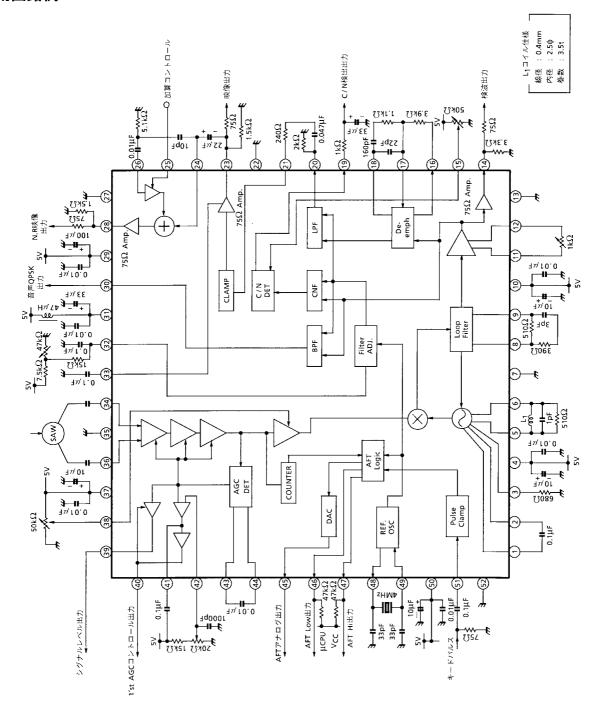
ノイズリダクション映像出力端子 (端子 28) の出力信号を DG / DP 測定器に接続し、測定する。


(※1) C/Nの規定

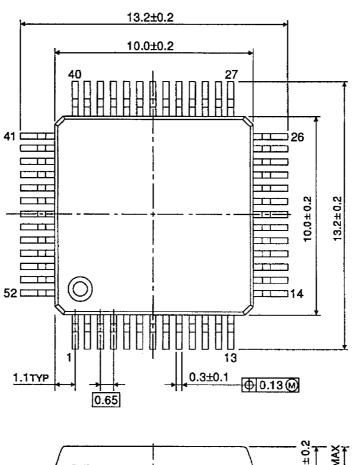
C / N = C - (No + 74.3) [dB]

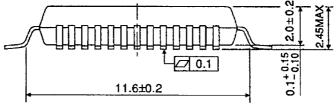

C : 無変調時のキャリアレベルNo : 1Hz 当たりの雑音電力

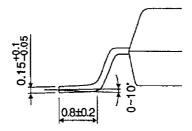
校正 : 10dB 以下で C/N を校正する


測定回路 1 直流特性

測定回路 2 交流特性


応用回路例




* 4 MHz 基準信号を外部注入する際は、高調波レベルによる誤作動する可能性があります。 2 次高調波との D/U 比は最低 20dB 以上取ってご使用願います。

外形図

QFP52-P-1010-0.65 Unit: mm

質量: 0.45 g (標準)